CSCE 41403 – Section 1: Data Mining

Fall 2024 Course Syllabus

Class Schedule  Course Project

BELL 2286, 11:00am-12:15pm Tuesday & Thursday

Instructor: Xintao Wu
Office: JBHT 516,  (479) 575-6519 
Email: xintaowu at uark dot edu
URL:  http://sail.uark.edu
Prerequisite:  (CSCE 31903 or CSCE 3193H3 or DASC 21003) or (CSCE 20104 and INEG 23303 and INEG 23104) or (CSCE 20104 and STAT 30133 and STAT 30043))
Office Hours:  10:00-11:00am Tuesday & Thursday

Course Material:

Jiawei Han, Jian Pei, and Hanghang Tong.  Data Mining: Concepts and Techniques, 4th edition, Morgan Kaufmann, 2022. ISBN: 978-0-12-811760-6

Charu C. Aggarwal, Data Mining, The Text Book. Springer (optional)

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman. Mining of Massive Datasets., 2014 (optional)

Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Addison Wesley, ISBN:0-321-32136-7 (optional)

Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2009. (optional)

Grading

Homework and Quiz 10%     Term Project 30%    Midterm 20%     Final Exam 40%

Teaching Assistant

Bertrand Munihuzi Kalisa     bmkalisa@uark.edu, office hours: 1:00-3:30pm Wednesday & Friday, JBHT 434

Course Description

Topics include data preprocessing; data warehousing and online analytical processing; data cube; mining frequent patterns, associations and correlations; supervised learning including decision tree induction, naïve Bayesian classification, support vector machine and K-nearest neighbor learning; unsupervised learning including K-means clustering and hierarchical clustering; outlier analysis; and data mining in cloud computing, social media, bioinformatics and healthcare applications.